skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Išgum, Ivana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A search is performed for dark matter particles produced in association with a resonantly produced pair of b-quarks with 30 < mbb < 150 GeV using 140 fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. This signature is expected in extensions of the standard model predicting the production of dark matter particles, in particular those containing a dark Higgs boson s that decays into bb¯. The highly boosted s → bb¯ topology is reconstructed using jet reclustering and a new identification algorithm. This search places stringent constraints across regions of the dark Higgs model parameter space that satisfy the observed relic density, excluding dark Higgs bosons with masses between 30 and 150 GeV in benchmark scenarios with Z0 mediator masses up to 4.8 TeV at 95% confidence level. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. A<sc>bstract</sc> The paper presents a search for supersymmetric particles produced in proton-proton collisions at$$ \sqrt{s} $$ s = 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb−1. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle$$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 , is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of$$ {\overset{\sim }{\chi}}_1^0 $$ χ ~ 1 0 is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Free, publicly-accessible full text available December 1, 2025
  4. Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called omnifold is used to produce a simultaneous measurement of twenty-four Z+jets observables using 139 /fb of proton-proton collisions at sqrt(s) =  TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible reuse in a variety of contexts and for new observables to be constructed from the twenty-four measured observables. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  5. A<sc>bstract</sc> A search is presented for new particles produced in proton-proton collisions at a centre-of-mass energy of 13 TeV that result in final states comprising a massive vector (WorZ) boson that decays hadronically and large missing transverse momentum. The data sample was collected with the ATLAS experiment at the Large Hadron Collider from 2015 to 2018 and corresponds to an integrated luminosity of 140 fb−1. No significant excess over the Standard Model expectation is observed. Model-independent 95% confidence-level limits on the visible cross-section that range from 0.3 fb to 79.5 fb are obtained for non-Standard-Model processes. Exclusion limits are also presented for models with axion-like particles, for two-Higgs-doublet models with a pseudo-scalar mediator between the Standard Model and the dark sector, for the invisible decay of the Higgs boson and for pair-produced weakly interacting dark matter candidates. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  6. The associated production of Higgs and W bosons via vector-boson fusion is highly sensitive to the relative sign of the Higgs boson couplings to W and Z bosons. In this Letter, two searches for this process are presented, using 140 fb 1 of proton-proton collision data at s = 13 TeV recorded by the ATLAS detector at the LHC. The first search targets scenarios with opposite-sign couplings of the W and Z bosons to the Higgs boson, while the second targets standard model-like scenarios with same-sign couplings. Both analyses consider Higgs boson decays into a pair of b quarks and W boson decays with an electron or muon. The data exclude the opposite-sign coupling hypothesis with a significance beyond 5 σ , and the observed (expected) upper limit set on the cross section for vector-boson fusion W H production is 9.0 (8.7) times the standard model value at 95% confidence level. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
  7. A search for the nonresonant production of Higgs boson pairs in the H H b b ¯ τ + τ channel is performed using 140 fb 1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimized to probe anomalous values of the Higgs boson self-coupling modifier κ λ and of the quartic H H V V ( V = W , Z ) coupling modifier κ 2 V . No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit μ H H < 5.9 ( 3.3 ) is set at 95% confidence-level on the Higgs boson pair production cross section normalized to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of 3.1 < κ λ < 9.0 ( 2.5 < κ λ < 9.3 ) and 0.5 < κ 2 V < 2.7 ( 0.2 < κ 2 V < 2.4 ), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross sections assuming different kinematic benchmark scenarios. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
  8. A<sc>bstract</sc> Measurements of inclusive, differential cross-sections for the production of events with missing transverse momentum in association with jets in proton-proton collisions at$$ \sqrt{s} $$ s = 13 TeV are presented. The measurements are made with the ATLAS detector using an integrated luminosity of 140 fb−1and include measurements of dijet distributions in a region in which vector-boson fusion processes are enhanced. They are unfolded to correct for detector resolution and efficiency within the fiducial acceptance, and are designed to allow robust comparisons with a wide range of theoretical predictions. A measurement of differential cross sections for theZ→ννprocess is made. The measurements are generally well-described by Standard Model predictions except for the dijet invariant mass distribution. Auxiliary measurements of the hadronic system recoiling against isolated leptons, and photons, are also made in the same phase space. Ratios between the measured distributions are then derived, to take advantage of cancellations in modelling effects and some of the major systematic uncertainties. These measurements are sensitive to new phenomena, and provide a mechanism to easily set constraints on phenomenological models. To illustrate the robustness of the approach, these ratios are compared with two common Dark Matter models, where the constraints derived from the measurement are comparable to those set by dedicated detector-level searches. 
    more » « less
  9. Several processes studied by the ATLAS experiment at the Large Hadron Collider produce low momentum b-flavored hadrons in the final state. This paper describes the calibration of a dedicated tagging algorithm that identifies b-flavored hadrons outside of hadronic jets by reconstructing the soft secondary vertices originating from their decays. The calibration is based on a proton-proton collision dataset at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 140 fb−1. Scale factors used to correct the algorithm’s performance in simulated events are extracted for the b-tagging efficiency and the mistag rate of the algorithm using a data sample enriched in t¯t events. Several orthogonal measurement regions are defined, binned as a function of the multiplicities of soft secondary vertices and jets containing a b-flavored hadron in the event. The mistag rate scale factors are estimated separately for events with low and high average numbers of interactions per bunch crossing. The results, which are derived from events with low missing transverse momentum, are successfully validated in a phase space characterized by high missing transverse momentum and therefore are applicable to new physics searches carried out in either phase space regime. 
    more » « less